Plant-parasitic nematodes (PPNs) pose a significant threat to global agricultural productivity, necessitating effective control measures. Although chemical nematicides have demonstrated efficacy, their adverse environmental, human health, and climate change impacts raise concerns. However, the use of organic amendments such as compost and vermicompost offers sustainable and eco-friendly alternatives for PPNs management, thereby promoting environmental preservation and human safety as well as mitigating climate changes and global worming influences. The Potential of compost and vermicompost to control PPNs has been widely investigated. However, the key mechanisms by which compost and vermicompost control PPNs have not yet been thoroughly investigated. Therefore, this review comprehensively evaluates the effectiveness of compost and vermicompost in managing PPNs, and elucidates the key mechanisms underlying their nematicidal activity. These mechanisms encompass changes in soil properties including pH, organic matter, and humic material; the release of nematotoxic compounds such as nitrogenous compounds, phenolic substances, and fatty acids; and overall enhancement of plant physiological strategies that contribute to the enhancement of plant defense against PPNs. By synthesizing and criticizing existing research, this review lays a foundation for further exploration of biocontrol strategies against PPNs using compost and vermicompost, promoting sustainable agricultural practices, preserving environment and mitigating reliance on chemical interventions.

Link to the publication